第 41 卷 第 19 期/2021 年 10 月/光学学报

光通信波段中基于谷霍尔效应的单向波导

李雪梅^{1,2},张明达^{1,2,3*},朱小冬^{1,2},杨毅彪^{1,2},费宏明^{1,2},曹斌照^{1,2},刘欣^{1,2},张娅敏^{1,2}

²太原理工大学新型传感器与智能控制教育部重点实验室,山西太原 030024 ³天津大学理学院量子交叉研究中心,天津 300350

摘要提出了一种基于谷霍尔效应的单向波导,波导结构由两种不同拓扑性质的光子晶体组成。这两种光子晶体 均是由 Al₇₀ Ga₃₀ As 和 Si 介质柱构成,可以实现光在通信波段中的单向通过。仿真结果表明,所提结构不仅可以实 现光路的大角度转弯,还对缺陷具有良好的耐受性,为具有高效光传输特性的新型光波导设计提供了参考。 关键词 集成光学;光子晶体;谷霍尔效应;拓扑光学;单向传输;边界态 中图分类号 O469 文献标志码 A doi: 10.3788/AOS202141.1913001

Unidirectional Wave Guide Based on Valley Hall Effect in Optical Communication Band

Li Xuemei^{1,2}, Zhang Mingda^{1,2,3*}, Zhu Xiaodong^{1,2}, Yang Yibiao^{1,2}, Fei Hongming^{1,2}, Cao Binzhao^{1,2}, Liu Xin^{1,2}, Zhang Yamin^{1,2}

¹ College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; ² Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education,

Taiyuan University of Technology, Taiyuan, Shanxi 030024, China;

³ Center for Joint Quantum Studies, School of Science, Tianjin University, Tianjin 300350, China

Abstract In this paper, we propose a unidirectional wave guide based on valley Hall effect, which is composed of two kinds of photonic crystals with different topological properties. These two kinds of photonic crystals are composed of $Al_{70} Ga_{30} As$ and Si dielectric cylinders, which can realize the unidirectional passage of light in the communication band. The simulation results show that the proposed structure can not only realize the large angle turn of the optical path, but also has good tolerance to defects, which provides a reference for the design of new optical waveguides with efficient optical transmission characteristics.

Key words integrated optics; photonic crystals; valley Hall effect; topological photonics; unidirectional transmission; interface state

OCIS codes 130.5296; 050.5298

1引言

在过去的 20 年中, 拓扑光子系统受到了人们的 广泛关注。由于拓扑光子系统对缺陷和位置参数的 紊乱不敏感, 因此该系统对光子特性具有很好的稳 定性, 且对微纳米制造工艺中可能存在的缺陷与误 差具有良好的耐受性。拓扑现象不仅存在于一维到 三维光子系统中,还存在于含有角动量的涡旋光 中^[1]。在一维光子系统中,人们关注的是 Zak 相 位^[2-4],它与拓扑性质和电磁手性、表面等离子体激 元以及其他新颖性质密切相关,如 Sinc 函数型光子 晶体的 Kerr 效应等^[5]。Weyl 点可以反映三维系统

收稿日期: 2021-02-08; 修回日期: 2021-03-28; 录用日期: 2021-04-29

通信作者: *zhangmingda@tyut.edu.cn

基金项目:国家自然科学基金(11704275,11904255)

中的拓扑现象,研究人员在光子系统中也发现了它的存在^[6-12]。虽然三维系统促进了拓扑主题的丰富 多样,但是其工业制造较为困难。

二维系统不仅比一维系统具有更多的可调参数,在实验和制造中还比三维系统更容易实现。因此,与一维和三维系统相比,二维系统更有可能被应用于日常生活中。二维拓扑光子系统可以分为光量子霍尔系统,光量子自旋霍尔系统和光量子谷霍尔系统。在前两个系统中,主要利用法拉第效应材料^[13-17]和谐振腔^[18-19]来实现拓扑特性。在谷霍尔系统中,主要利用蜂窝状结构来降低实现拓扑特性的需求,在此结构的能带图中,可以在能带结构的K(K')点处找到狄拉克点,并且通过连续改变结构的参数可以解除 K 点的简并^[20-22]。在两种不同拓扑边缘间的边界处实现了单向传输,这使得单向波导的实现成为可能。

与在光子晶体中添加非线性材料和利用传统 集成波导的方式来实现光子单向传输相比^[23-29], 利用谷霍尔系统的优点是不需要极高的能量就可 实现光子的单向传输,这降低了对设备设计和应 用的要求。在本文中,提出了一种二维光子晶体 复合结构,该结构由两种蜂窝结构的光子晶体组

第 41 卷 第 20 期/2021 年 10 月/光学学报

成,在这两种光子晶体的连接处,可以实现在光通 信波段中光子的单向传输。此外,设计这两种结 构的材料是 Al₇₀Ga₃₀As 与 Si,两种材料均是优秀 的微纳半导体材料,且加工工艺相对成熟。所提 方法简单且易操控,可为设计光通信波段单向波 导提供参考。

2 二维拓扑光子晶体结构

图 1(a)为两种光子晶体的原胞示意图。所提 二维拓扑单向波导结构如图 1(b)所示,其由两种以 空气为背景的蜂窝状光子晶体结构组成,结构的晶 格常数 a 均为 600 nm。组成该波导结构的光子晶 体分别为 PhC1 和 PhC2,这两种光子晶体的原胞中 均包含两个介质柱(Al₇₀ Ga₃₀ As 和 Si),两个介质柱 的半径 R 大小相等,均为 70 nm。在室温下, Al₇₀ Ga₃₀ As 和 Si 在 0.2~2 μ m 波长范围内的色散 曲线如图 1(c)、(d)所示。色散曲线的数据从常用 折射率数据库 Refractive index database 中获得,色 散曲线中同时给出了复折射率的实部 n 与虚部 k。 从图 1(c)、(d)中可以看出,这两种材料在光通信波 段中的虚部 k 几乎为 0,即在此波段范围内,可不考 虑材料对电磁波的吸收。

图 1 光子晶体结构示意图与不同材料色散曲线。(a)两种光子晶体的原胞示意图;(b)二维蜂窝结构光子晶体的示意图; (c) Al₇₀Ga₃₀As 和(d) Si 在 0.2~2μm 波长范围内的色散曲线

Fig. 1 Structural diagrams of photonic crystals and dispersion curves of different materials. (a) Schematic diagrams of primitive cells of two kinds of photonic crystals; (b) Schematic diagram of two-dimensional honeycomb structure photonic crystal; dispersion curves of (c) Al₇₀ Ga₃₀ As and (d) Si in the wavelength range from 0.2 μm to 2 μm

光子晶体 PhC1 和光子晶体 PhC2 的结构参数 相同,原胞内均包含半径相同的两个介质柱,整体组

成满足 C6 对称群的六角蜂窝结构。PhC1 与 PhC2 的不同之处在于,原胞内介质柱的材料是相反的。

第 41 卷 第 20 期/2021 年 10 月/光学学报

在 PhC1 中,原胞内上方的介质柱是 Si,下方的介质 柱是 Al₇₀ Ga₃₀ As。在 PhC2 中,原胞内上方的介质 柱是 Al₇₀ Ga₃₀ As,下方的介质柱是 Si。由于在 PhC1 与 PhC2 中有两种不同的材料,因此两种光子 晶体 仅满足 C3 对称 群。利用 Lumerical FDTD Solutions 以及 Comsol Multiphysics 等软件进行模 拟计算,可以发现,如果原胞中两个介质柱的材料全 部为 Al₇₀ Ga₃₀ As 时,对于横磁(TM)波,能带将在频 率为 208 THz 处简并形成一个狄拉克点,对应的波 长为 1440 nm,如图 2(a)所示。在保持其他光学参 数不变的情况下,无论是增加还是减小原胞中某一 介质柱的折射率,都会破坏晶格对称性,促使狄拉克 点简并解除,进而在能带中产生带隙使能带性质发 生拓扑相变。因此,将光子晶体 PhC1 原胞内上方 的介质柱材料和光子晶体 PhC2 原胞内下方的介质 柱材料设置为 Si,可以解除能带的简并,形成两种 拓扑性不同的结构,如图 2(b)、(c)所示。这两种光 子晶体的能带均在频率范围为 188~207 THz 处出 现带隙。图 2(d)、(e)展示了两种光子晶体在 k₁ 点 和 k₂ 点处的本征场,可以发现,不仅这两种光子晶 体的本征场是相反的,在同一点处箭头标出的能量 流方向也是反向的。图 2(d)、(e)表明能带的拓扑 性质随介质柱的交换而变化,这为构建包含两种光 子晶体的单向波导提供了新的思路。

图 2 能带结构与本征场分布。(a)当原胞中两个介质柱的材料都是Al₇₀Ga₃₀As时,光子晶体的能带结构; (b) PhC1 和(c) PhC2 的能带结构,阴影部分是禁带;在(d) PhC1 和(e) PhC2 中,k₁和k₂处的本征场分布

Fig. 2 Energy-band structures and eigenfield distributions. (a) Energy-band structure of photonic crystal when the materials of two dielectric cylinders are Al₇₀ Ga₃₀ As in primitive cell; (b) (c) energy-band structures of PhC1 and PhC2, the shaded parts represent forbidden bands; eigenfield distributions at k₁ and k₂ in (d) PhC1 and (e) PhC2

3 结构模型与仿真

由第 2 节可知,光子晶体 PhC1 和光子晶体 PhC2 具有不同的拓扑性质,而在具有相反能带性 质的两种光子晶体结构之间的界面处存在边界状 态。以光子晶体 PhC1 和光子晶体 PhC2 间的边界 为分界线,上方和下方各放置 4 个原胞,如图 3(a) 所示。使用 Comsol Multiphysics 计算超元胞,将结 构沿 k_x方向进行投影来确定边界状态,结构的色 散关系如图 3(b)所示。其中,在 200 THz 附近处, 左侧的空心线和右侧的实线表示的是边界态的色散 关系,其余部分表示光子晶体的体带,波导可实现单 向传输的工作频率范围为 190~202 THz。曲线的 斜率表示边界态的传播方向,一个自旋向上,另一个 自旋向下。从图 3(b)中还可以看出,边界态的频率 处于两个光子晶体的公共带隙处。为了更形象地描述边界态的本征模,在图 3(c)中给出了频率为201.92 THz,波矢为-0.46×(2 π/a)时,界面态的 E_z (沿介质柱的z方向)本征场分布。可以发现,本征场集中在两个光子晶体的界面处,并从中间沿光 子晶体结构的两侧快速衰减。当两个光子晶体的间距l为0.1a时,虽然边界态仍然存在,但是与l=0时相比,边界态向低频方向偏移,上下的体带都向高频方向偏移。由于两个光子晶体之间的距离较小,因此上述现象在图 3(d)中不够明显。

随后,通过仿真模拟来验证图 3(a)中结构具 有稳定的单向传播特性。在两个光子晶体分界面 的中心处放置 6 个激发源^[30],这 6 个激发源均匀 分布在半径为 0.02*a* 的圆上,相位沿逆时针方向 依次增加 π/6,组成左旋光源。取激发源的频率为

第 41 卷 第 20 期/2021 年 10 月/光学学报

研究论文

201.92 THz(相应波长为1486 nm),该频率处于两 个光子晶体的公共带隙中,所激发的场分布如图 4 (a)所示,可以看出,光源在光子晶体波导结构中所 激发的场只沿边界向左传播。为了更清晰地观察到 单向传播,给出了坡印廷矢量的传播方向,如图 4 (b)所示,光沿着距离边界最近的介质柱向左传播, 并且没有向右传播的光。如果将激发源的初始相位 顺时针增大,将会形成向右传播的光场,这里不再赘 述。当 *l*=0.1*a* 时,场分布和坡印廷矢量分布并没 有发生变化,如图 4(c)、(d)所示。

图 3 单向传输波导结构示意图与投影能带结构。(a)单向传输波导结构示意图,虚线框表示用于能带计算的超原胞的结构图; (b)当 *l*=0时,两光子晶体的投影能带结构;(c)边界态的*E*。本征场分布;(d)当 *l*=0.1*a* 时,两光子晶体的投影能带结构

Fig. 3 Structural diagram of unidirectional wave guide and projected energy-band structures. (a) Structural diagram of unidirectional wave guide, the area in the dotted box represents structural diagram of super-primitive cell used for band calculation; (b) the projected energy-band structures of two photonic crystals when l = 0; (c) E_z eigenfield distribution of the interface state; (d) the projected energy-band structures of two photonic crystals when l = 0.1a

图 4 在不同间隔下,光子晶体波导结构中的场分布和坡印廷矢量分布。(a)(b) *l*=0;(c)(d) *l*=0.1*a* Fig. 4 Field distributions and Poynting vector distributions in photonic crystal waveguide structures at different intervals. (a)(b) *l*=0; (c)(d) *l*=0.1*a*

第 41 卷 第 20 期/2021 年 10 月/光学学报

光在传统微纳光子器件中传输时,会遇到诸如 大角度转弯等问题,这会降低光在光子器件中的传 输效率。而拓扑光子器件对大角度转弯和缺陷有很 强的耐受性。为了进一步验证拓扑光子器件对大角 度转弯的耐受性,将两种光子晶体的分界面构造成 Z型,如图 5(a)所示。相位顺时针增大的光源在该 结构中激发场的模拟结果如图 5(b)所示,可以发 现,光沿着 Z型边界单向传播且在传播过程中没有 发生衰减。这证实了在拓扑光子器件中,光在遇到 大角度转弯时依然会沿着边界传播。

Fig. 5 (a) Structural diagram and (b) field distribution of Z-shaped photonic crystal waveguide structure

为了验证拓扑光子器件对缺陷的耐受性,随机将 边界中的某一介质柱移除,该操作已在图 6(a)中用虚 线矩形框标出。从图 6(b)中可以看出,这种操作不 会影响光子晶体单向传输的特性。此外,随机将边界 中多个介质柱的位置向左或向右移动,该操作已在图 6(c)中用虚线矩形框标出。从图 6(d)中可以看出,结 构整体仍然显示出良好的单向传输性。这表明由两 种具有不同拓扑特性的光子晶体组合而成的拓扑光 子器件具有良好的鲁棒性,并且在有缺陷的情况下也 不会影响拓扑光子器件单向传播的特性。

Fig. 6 Structural diagrams and field distributions in photonic crystal waveguide structures at different cases.(a)(b) Removing a dielectric cylinder at the boundary randomly; (c)(d) moving the positions of multiple dielectric cylinders at the boundary randomly

4 结 论

利用 Al₇₀ Ga₃₀ As 和 Si 构造了一种具有蜂窝结 构的拓扑光子晶体,通过交换原胞内 Al₇₀ Ga₃₀ As 介 质柱和 Si 介质柱的位置,获得了两种具有不同拓扑 性质的光子晶体。将这两种不同性质的光子晶体组 合起来后,构建出了新的光子晶体波导结构。不论 边界是何种形状,光都会沿着它们的共同边界单向 传播。通过构造 Z 型结构的光子晶体,或者在边界 处引入缺陷,如移除边界中某个介质柱、移动边界处 多个介质柱的位置,验证了该光子晶体波导结构对 大角度转弯和缺陷的耐受性。所提光子晶体波导结 构在一定程度上提高了制造器件的容错率,同时为 新型光单向传输波导结构的设计提供了参考,具有

第 41 卷 第 20 期/2021 年 10 月/光学学报

研究论文

一定的应用价值。

参考文献

- [1] Zou W K, Yang C Y, Hou J, et al. Measurement of topological charges for vortex beams using gradually-changing-period annular gratings [J]. Laser &. Optoelectronics Progress, 2019, 56(14): 140501.
 邹文康,杨春勇,侯金,等.环形渐变型光栅用于涡旋光束拓扑荷数测量的研究[J]. 激光与光电子学进展, 2019, 56(14): 140501.
- [2] Xiao M, Zhang Z, Chan C. Surface impedance and bulk band geometric phases in one-dimensional systems [J]. Physical Review X, 2014, 4 (2): 021017.
- [3] Tan W, Sun Y, Chen H, et al. Photonic simulation of topological excitations in metamaterials [J]. Scientific Reports, 2014, 4: 3842.
- [4] Poddubny A, Miroshnichenko A, Slobozhanyuk A, et al. Topological Majorana states in zigzag chains of plasmonic nanoparticles[J]. ACS Photonics, 2014, 1 (2): 101-105.
- [5] Wang Y. Kerr and faraday effects at interface between topological insulator and Sinc-functional photonic crystal [J]. Chinese Journal of Lasers, 2020, 47(10): 1003002.
 王筠. 拓扑绝缘体与 Sinc 函数型光子晶体分界面处

Kerr效应和 Faraday效应研究[J]. 中国激光, 2020, 47(10): 1003002.

- [6] Lu L, Fu L, Joannopoulos J D, et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 2013, 7(4): 294-299.
- [7] Yang B, Guo Q, Tremain B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures [J]. Science, 2018, 359 (6379): 1013-1016.
- [8] Lu L, Wang Z, Ye D, et al. Experimental observation of Weyl points [J]. Science, 2015, 349 (6248): 622-624.
- [9] Gao W L, Yang B, Lawrence M, et al. Photonic Weyl degeneracies in magnetized plasma [J]. Nature Communications, 2016, 7: 12435.
- [10] Noh J, Huang S, Leykam D, et al. Experimental observation of optical Weyl points and Fermi arc-like surface states [J]. Nature Physics, 2017, 13(6): 611-617.
- [11] Chen W J, Xiao M, Chan C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states [J]. Nature Communications, 2016, 7: 13038.
- [12] Wang Q, Xiao M, Liu H, et al. Optical interface states protected by synthetic Weyl points [J].

Physical Review X, 2017, 7(3): 031032.

- [13] Haldane F D, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry [J]. Physical Review Letters, 2008, 100(1): 013904.
- [14] Wang Z, Chong Y, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265): 772-775.
- [15] Poo Y, Wu R X, Lin Z, et al. Experimental realization of self-guiding unidirectional electromagnetic edge states
 [J]. Physical Review Letters, 2011, 106(9): 093903.
- [16] Fang K J, Yu Z F, Fan S H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation [J]. Nature Photonics, 2012, 6 (11): 782-787.
- [17] Rechtsman M C, Zeuner J M, Plotnik Y, et al. Photonic Floquet topological insulators [J]. Nature, 2013, 496(7444): 196-200.
- [18] Hafezi M, Demler E A, Lukin M D, et al. Robust optical delay lines with topological protection [J]. Nature Physics, 2011, 7(11): 907-912.
- [19] Gao F, Gao Z, Shi X H, et al. Probing topological protection using a designer surface plasmon structure
 [J]. Nature Communications, 2016, 7: 11619.
- [20] Dong J W, Chen X D, Zhu H Y, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 2017, 16(3): 298-302.
- [21] Chen X D, Deng W M, Lu J C, et al. Valleycontrolled propagation of pseudospin states in bulk metacrystal waveguides [J]. Physical Review B, 2018, 97(18): 184201.
- [22] Ma T, Shvets G. Scattering-free edge states between heterogeneous photonic topological insulators [J]. Physical Review B, 2017, 95(16): 165102.
- [23] Gallo K, Assanto G, Parameswaran K R, et al. Alloptical diode in a periodically poled lithium niobate waveguide[J]. Applied Physics Letters, 2001, 79 (3): 314-316.
- [24] Wei Y, Fang Y T. Coding control of optical path of two-dimensional magneto-optical photonic crystal[J]. Chinese Journal of Lasers, 2020, 47(9): 0905002.
 魏芸,方云团. 二维磁光光子晶体光路的编码控制 [J]. 中国激光, 2020, 47(9): 0905002.
- [25] Hu J F, Liu B, Liang H Q, et al. Achieving nonreciprocal transmission by breaking symmetry of nonlinear Fano cavity structure in photonic crystals
 [J]. Acta Optica Sinica, 2017, 37(3): 0323002.
 胡金凤,刘彬,梁红勤,等. 打破光子晶体非线性 Fano 腔结构对称性实现单向传输[J]. 光学学报, 2017, 37(3): 0323002.

- [26] Ren K, Fan J Y, Ren X B. Active control of nonreciprocal optical transmission direction[J]. Acta Optica Sinica, 2017, 37(7): 0726003.
 任坤,范景洋,任晓斌.非互易光传输方向的主动调 控[J]. 光学学报, 2017, 37(7): 0726003.
- [27] Mingaleev S F, Kivshar Y S. Nonlinear transmission and light localization in photonic-crystal waveguides
 [J]. Journal of the Optical Society of America B, 2002, 19(9): 2241-2249.
- [28] Dang T T, Wang J F. Control of Gaussian optical waves in Gaussian parity-time symmetric waveguide
 [J]. Acta Optica Sinica, 2020, 40(3): 0319001.
 党婷婷, 王娟芬. 高斯型 PT 对称波导中高斯光波的 控制[J]. 光学学报, 2020, 40(3): 0319001.
- [29] Fei H M, Wu M, Liu H Y, et al. Study on unidirectional transmission characteristics of waveguide heterostructure based on total reflection
 [J]. Acta Optica Sinica, 2018, 38(3): 0323001.
 费宏明,武敏,刘辉阳,等.基于全反射的波导异质 结构单向传输性能研究[J].光学学报, 2018, 38
 (3): 0323001.
- [30] Yang Y, Jiang H, Jiang H, et al. Topological valley transport in two-dimensional honeycomb photonic crystals[J]. Scientific Reports, 2018, 8(1): 1588.
- [31] Gao Y F, Jiang Z, Zhang L L, et al. Unidirectional propagation of coupled edge states in sandwich topological photonic crystals[J]. Journal of Applied Physics, 2018, 124(21): 213107.

第 41 卷 第 20 期/2021 年 10 月/光学学报